The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
SAR Target Recognition Using Wavelet Transform and Deep Sparse Autoencoders
Author(s): 
Pages: 31-35
Year: Issue:  13
Journal: Video Engineering

Keyword:  SAR imagestargets recognitiondeep sparse autoencodersdeep learningwavelet transform;
Abstract: 针对SAR图像预处理算法自适应能力差、带标签图像不足、目标特征提取困难等问题,提出了一种基于小波变换和深层稀疏编码的SAR图像目标自动识别算法.首先利用灰度值和尺度缩放获得大量的无标签SAR目标,并采用离散小波变换对图像进行高效的降维,再结合深层稀疏编码提取目标的深层抽象特征并完成识别任务.采用MSTAR数据库中3类军事目标进行算法仿真与验证.实验结果表明,在没有预处理的情况下,该算法能够有效地完成多目标SAR图像分类,且具有较高的识别率和鲁棒性.
Related Articles
No related articles found