The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Research on Maximum Likelihood Sparse Coding in Face Recognition
Author(s): 
Pages: 230-233
Year: Issue:  23
Journal: Video Engineering

Keyword:  face recognitionfeature extractionsparse codingmaximum likelihood estimation;
Abstract: 稀疏编码(SRC)是一种用于人脸识别的方法,该方法把检测图像表示为一组训练样本的稀疏线性组合,表示的准确性通过L2或L1残余项来衡量.此模型假定编码残余项服从高斯分布或拉普拉斯分布,实际上却不能很准确地描述编码错误率.为了解决这个问题,提出了一种新的稀疏编码方法,建立一种有约束的回归问题模型,用最大似然稀疏编码(MSC)寻找此模型的最大似然估计参数,对异常情况具有很强的鲁棒性.在Yale及ORL人脸数据库的实验结果表明了该方法对于人脸模糊、光照及表情变化等的有效性及鲁棒性.
Related Articles
No related articles found