The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
ji yu markov tan fen jie de chou yang jin si tui li suan fa
Author(s): 
Pages: 729-739
Year: Issue:  8
Journal: Pattern Recognition and Artificial Intelligence

Keyword:  Approximate InferenceBayesian NetworkMarkov BlanketGibbs Sampling;
Abstract: 现有的贝叶斯推理算法不同程度地存在推理精度低或推理时间长的问题.文中提出一种基于Markov毯分解的抽样近似推理算法(LSIA-MB).LSIA-MB算法利用HITON_MB算法寻找查询结点的Markov毯,进而利用动态规划方法学习边的后验概率,确定变量之间的因果关系,获得一个关于查询结点的Markov局部网络模型.最后,在Markov局部模型上执行Gibbs Sampling.通过对Markov局部模型的抽样,极大降低推理的计算维数.同时,由于Markov局部网络模型包含与目标结点相关的完整信息,从而保证局部抽样推理的精度.算法分析和在标准Alarm网的实验结果均表明,LSIA-MB算法降低推理时间,且提高推理精度.LSIA-MB算法在上海股票交易网络上的推理预测结果显示出较强的实用性.
Related Articles
No related articles found