The server is under maintenance between 08:00 to 12:00 (GMT+08:00), and please visit later.
We apologize for any inconvenience caused
Login  | Sign Up  |  Oriprobe Inc. Feed
China/Asia On Demand
Journal Articles
Laws/Policies/Regulations
Companies/Products
Bookmark and Share
Research on Traffic Anomaly Detection Mechanism Based on Prediction and Dynamic Threshold
Author(s): 
Pages: 105-108
Year: Issue:  1
Journal: Video Engineering

Keyword:  异常检测混沌支持向量机模型流量预测残差置信区间;
Abstract: 针对流量异常检测中的基线和阈值难以精确刻画的问题,提出了一种基于预测和动态阈值的异常检测机制.通过构造混沌支持向量机预测模型对流量基线值进行确定;采用假设检验的异常检验方法,利用一天中各时段对应训练集拟合残差符合正态分布的特点构造符合t分布的随机变量,进而计算各时段预测残差的置信区间来动态地确定网络流量的阈值.实验结果表明,预测模型具有很高的预测精度,该异常检测机制具有一定的可行性.
Related Articles
No related articles found